SWITCHMODE Power Rectifiers

MUR105, MUR110, MUR115, MUR120, MUR130, MUR140, MUR160

The MUR120 series of SWITCHMODE power rectifiers are designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- Ultrafast 25, 50 and 75 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 600 V
- Shipped in Plastic Bags; 1,000 per Bag
- Available Tape and Reel; 5,000 per Reel, by adding a "RL" Suffix to the Part Number
- These are Pb-Free Devices*

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 Gram (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Cathode Indicated by Polarity Band

ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIERS 1.0 AMPERE, 50 – 600 VOLTS

MARKING DIAGRAM

A = Assembly Location MUR1xx = Specific Device Code

Y = Year WW = Work Week ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS

		MUR							
Rating	Symbol	105	110	115	120	130	140	160	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	300	400	600	V
Average Rectified Forward Current (Square Wave Mounting Method #3 Per Note 2)	I _{F(AV)}	1.0 @ T _A = 130°C		Α					
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	35		А					
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	- 65 to +175			°C				

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Maximum Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	Note 2	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Va	lue	Unit
Maximum Instantaneous Forward Voltage (Note 1) ($i_F = 1.0 \text{ Amp}, T_J = 150^{\circ}\text{C}$) ($i_F = 1.0 \text{ Amp}, T_J = 25^{\circ}\text{C}$)	VF	0.710 0.875	1.05 1.25	V
Maximum Instantaneous Reverse Current (Note 1) (Rated DC Voltage, T_J = 150°C) (Rated DC Voltage, T_J = 25°C)	İR	50 2.0	150 5.0	μА
Maximum Reverse Recovery Time (I _F = 1.0 A, di/dt = 50 A/ μ s) (I _F = 0.5 A, i _R = 1.0 A, I _{REC} = 0.25 A)	t _{rr}	35 25	75 50	ns
Maximum Forward Recovery Time (I _F = 1.0 A, di/dt = 100 A/μs, I _{REC} to 1.0 V)	t _{fr}	25	50	ns
Typical Peak Reverse Recovery Current (I _F = 1.0 A, di/dt = 50 A/μs)	I _{RM}	0.85		А

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MUR105, MUR110, MUR115, MUR120

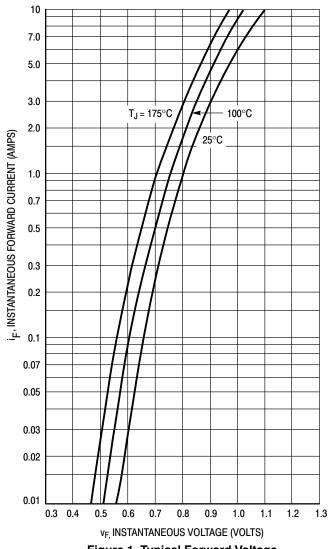


Figure 1. Typical Forward Voltage

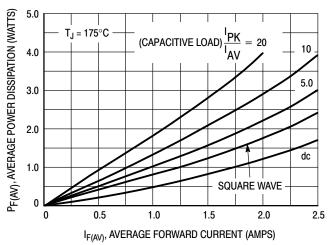


Figure 4. Power Dissipation

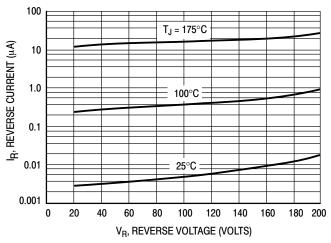


Figure 2. Typical Reverse Current*

* The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R .

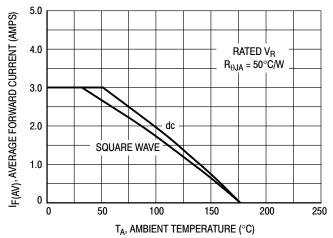


Figure 3. Current Derating (Mounting Method #3 Per Note 1)

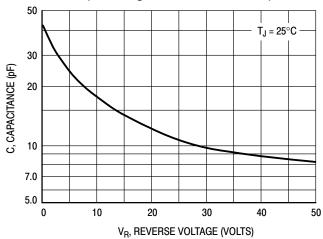


Figure 5. Typical Capacitance

MUR130, MUR140, MUR160

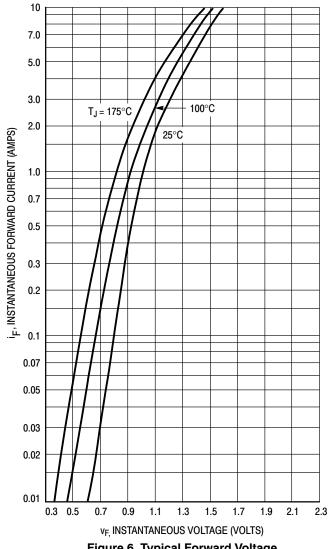


Figure 6. Typical Forward Voltage

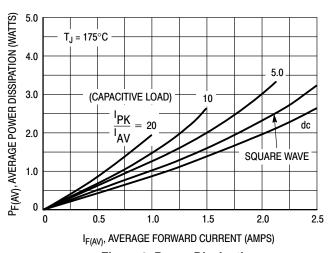


Figure 9. Power Dissipation

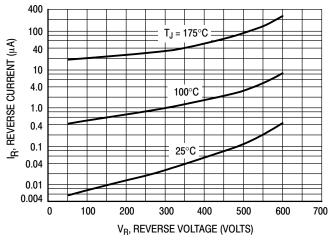
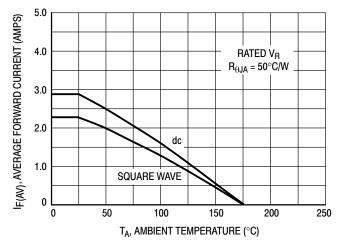



Figure 7. Typical Reverse Current*

* The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if $V_{\mbox{\scriptsize R}}$ is sufficiently below rated V_R.

Figure 8. Current Derating (Mounting Method #3 Per Note 2)

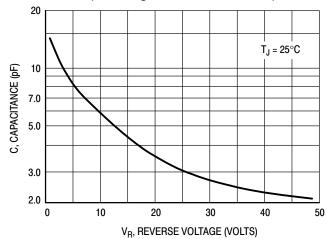
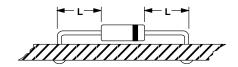
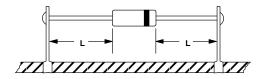


Figure 10. Typical Capacitance

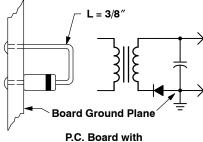

NOTE 2. — AMBIENT MOUNTING DATA

Data shown for thermal resistance, junction—to–ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.


TYPICAL VALUES FOR $\textbf{R}_{\theta \text{JA}}$ IN STILL AIR

Mounti	ng	Lead Length, L (in.)			
Method		1/8	1/4	1/2	Units
1		52	65	72	°C/W
2	$R_{\theta JA}$	67	80	87	°C/W
3			50		°C/W

MOUNTING METHOD 1

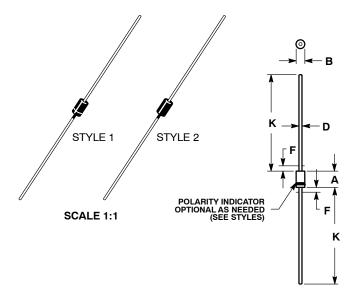


MOUNTING METHOD 2

Vector Pin Mounting

MOUNTING METHOD 3

P.C. Board with 1–1/2" X 1–1/2" Copper Surface

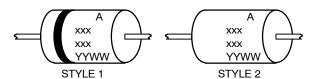

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
MUR105	MUR105	Axial Lead*	1000 Units / Bag
MUR105G	MUR105	Axial Lead*	1000 Units / Bag
MUR105RL	MUR105	Axial Lead*	5000 Units / Tape & Reel
MUR105RLG	MUR105	Axial Lead*	5000 Units / Tape & Reel
MUR110	MUR110	Axial Lead*	1000 Units / Bag
MUR110G	MUR110	Axial Lead*	1000 Units / Bag
MUR110RL	MUR110	Axial Lead*	5000 Units / Tape & Reel
MUR110RLG	MUR110	Axial Lead*	5000 Units / Tape & Reel
MUR115	MUR115	Axial Lead*	1000 Units / Bag
MUR115G	MUR115	Axial Lead*	1000 Units / Bag
MUR115RL	MUR115	Axial Lead*	5000 Units / Tape & Reel
MUR115RLG	MUR115	Axial Lead*	5000 Units / Tape & Reel
MUR120	MUR120	Axial Lead*	1000 Units / Bag
MUR120G	MUR120	Axial Lead*	1000 Units / Bag
MUR120RL	MUR120	Axial Lead*	5000 Units / Tape & Reel
MUR120RLG	MUR120	Axial Lead*	5000 Units / Tape & Reel
MUR130	MUR130	Axial Lead*	1000 Units / Bag
MUR130G	MUR130	Axial Lead*	1000 Units / Bag
MUR130RL	MUR130	Axial Lead*	5000 Units / Tape & Reel
MUR130RLG	MUR130	Axial Lead*	5000 Units / Tape & Reel
MUR140	MUR140	Axial Lead*	1000 Units / Bag
MUR140G	MUR140	Axial Lead*	1000 Units / Bag
MUR140RL	MUR140	Axial Lead*	5000 Units / Tape & Reel
MUR140RLG	MUR140	Axial Lead*	5000 Units / Tape & Reel
MUR160	MUR160	Axial Lead*	1000 Units / Bag
MUR160G	MUR160	Axial Lead*	1000 Units / Bag
MUR160RL	MUR160	Axial Lead*	5000 Units / Tape & Reel
MUR160RLG	MUR160	Axial Lead*	5000 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb–Free.

AXIAL LEAD CASE 59-10 **ISSUE U**

DATE 15 FEB 2005


STYLE 1: PIN 1. CATHODE (POLARITY BAND) STYLE 2: NO POLARITY 2. ANODE

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

- CONTROLLING DIMENSION: INCH.
 ALL RULES AND NOTES ASSOCIATED WITH
 JEDEC DO-41 OUTLINE SHALL APPLY
 POLARITY DENOTED BY CATHODE BAND.
 LEAD DIAMETER NOT CONTROLLED WITHIN F
 DIMENSION.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.161	0.205	4.10	5.20	
В	0.079	0.106	2.00	2.70	
D	0.028	0.034	0.71	0.86	
F		0.050		1.27	
K	1.000		25.40		

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code = Assembly Location Α

YY = Year WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASB42045B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	AXIAL LEAD		PAGE 1 OF 1	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

<u>MUR105 MUR105G MUR105RL MUR105RLG MUR110 MUR110G MUR110RL MUR110RLG MUR115</u>

<u>MUR115G MUR115RL MUR115RLG MUR120 MUR120FF MUR120FFG MUR120G MUR120RL MUR120RLG MUR130 MUR130G MUR130RL MUR130RLG MUR140G MUR140G MUR140RLG MUR160RLG MUR160RLG MUR160RLG MUR160RLG</u>